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AFIT-ENP-14-M-05
Abstract

Using a 1984 benchmark experiment, MCNP6 replicated the neutron flux and
neutron protection factor (NPF) measurements of an iron box, which simulated a basic
military vehicle, resulting in less than 5% difference from the published results.
Additionally, the neutron flux spectrum of a 2*°*PuBe source was characterized using a
Bonner Sphere Spectrometer (BSS) and the solution unfolded using the Maximum
Entropy Deconvolution (MAXED) program, producing a x*/df of 0.97. Utilizing a steel
box provided by the DTRA, measurements of neutron flux from a D-D neutron
accelerator were recorded via BSS inside and outside of the box. Both flux spectra were
unfolded through MAXED using MCNP6 computations as a priori, which resulted in
v*/df values of 0.86 and 0.91, respectively. NPF assessments of the steel box were then
conducted using experimental and MCNP6 flux spectra for the box, as well as H*(10)
scaling, with final results differing by less than 1%. MAXED software was leveraged for
all flux spectrum unfolding, incorporating updated BSS response functions generated
within this research from MCNP6. This experiment and its conclusions strongly support
the verification and validation of MCNP6 for modeling NPF assessments of military

vehicles.
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VERIFICATION AND VALIDATION OF MONTE CARLO N-
PARTICLE CODE 6 (MCNP6) WITH NEUTRON PROTECTION

FACTOR MEASUREMENTS OF AN IRON BOX

l. Introduction

Current Risk

Since the collapse of the Union of Soviet Socialist Republics (USSR) and the end
of the Cold War, the threat of a nuclear attack against the United States (US) or one of
her allies has never been greater [1]. This risk not only arises from hostile nation-states,
such as North Korea and Iran, but also from terrorist groups and similar non-state actors
determined to acquire nuclear weapons technology. If a nuclear attack against American
interests occurred, a significant portion of the US Army would likely respond to the
ensuing devastation and humanitarian crisis. Units deployed in support of these efforts
could be ordered to provide local and regional security, support the civil government,
triage and evacuate the wounded, and possibly defeat an invading military force.

Individually, each of these missions would surpass the capabilities of the US
Army’s organic Nuclear, Biological, and Chemical (NBC) units, those soldiers specially
trained and equipped to conduct operations in radiological environments. Consequently,
the US response to even a single nuclear detonation would likely require soldiers from a
variety of backgrounds within the US Army to operate within areas likely contaminated

with radioactive fallout. Additionally, if a nuclear attack is perpetrated by an aggressive
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nation-state, deployed soldiers could also face hostile forces and open combat amid
radioactive fallout, or be required to conduct operations in areas at risk of future nuclear
attack.

These scenarios present military commanders with a staggering challenge: how
does one weigh the risks of radiation exposure to their soldiers against accomplishment
of the mission? This determination might be simplified for dismounted soldiers wearing
only the Mission-Oriented Protective Postures (MOPP) suit; however, to answer this
question for mechanized and armored unit commanders, the US Army must understand
the degree of radiation shielding afforded by these vehicle types. In March of 2011,
during OPERATION TOMODACHI in Japan, this consideration became evident when
such information was required to support operational decisions [2].

Currently, the degree of radiation protection provided by US Army vehicles is
unknown for all but a handful of legacy items and variants. Additionally, the effort in
recent years to provide vehicles with better protection to American soldiers in both Iraq
and Afghanistan forced the Department of Defense (DoD) to rapidly field dozens of new
armored combat vehicles and vehicle variants. Although many boasted superior ballistic
protection, no experimental or computational evaluation of the radiological protection
afforded by the vehicles was required [2]. Consequently, this information simply does

not exist for the vast majority of wheeled and tracked vehicles in the US Army inventory.

Filling the Void

To counter this information gap, the Department of Defense tasked the Defense

Threat Reduction Agency (DTRA) and the US Army Nuclear and Combating Weapons

www.manaraa.com



of Mass Destruction Agency (USANCA) to devise a methodology for delivering this
critical information into the hands of US Army commanders; fortunately, this task is not
novel. Prior to the collapse of the USSR, the US Army routinely conducted experimental
and computational assessments of mission critical platforms to determine the degree of
radiological protection afforded to their crews [3, 4]. According to “The Final Report of
Radiation Shielding in Armored Vehicles” published by the Defense Technical
Information Center (DTIC) in 1988,

Radiation protection measures have several applications. It is desirable to

know the radiation protection factors of U.S. and allied vehicles since it

will affect the best mode of deployment in the event of the reality, or even

the threat of nuclear war. Similarly, the protection factors of potentially

hostile vehicles will affect U.S. targeting doctrine. It is also important to

make known to U.S. designers of vehicles of the future the best techniques

for attaining good radiation protection, so that they may be implemented

in an efficient and cost-effective manner [4].

Therefore, knowledge of each vehicle’s degree of radiation shielding offered a
variety of benefits at the tactical, operational, and strategic levels. Furthermore, by
incorporating such factors into US Army vehicle fielding requirements, the DoD
provided improved radiation protection to soldiers in a cost-effective manner.

The US Army quantifies radiation shielding into a value known as the radiation
protection factor (RPF) for each vehicle variant, which represents the ability of that
particular vehicle type to protect its occupants from different forms of external radiation.
Each measurement depends on the thickness and composition of the shielding material,
as well as the type and energy of the incident radiation. The specific type of RPF is

calculated based upon the ratio of the radiation dose outside compared to the dose present

inside the vehicle and may be determined using the equation

3
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Free Field Dose
RPF = - —. (1.2)
Dose Penetrating the Vehicle

Since the two most biologically significant sources of radiation pursuant to a nuclear
detonation consist of neutrons and secondary gammas, a more detailed analysis of a
vehicle RPF can be obtained by defining both the neutron protection factor (NPF) and the
gamma ray protection factor (GPF) [5]:

Free Field Neutron Dose

NPF = . . (1.2)
Neutron Dose Penetrating the Vehicle

Free Field Gamma Dose
GPF = : : (1.3)
Gamma Dose Penetrating the Vehicle

The clear implication to draw from these three equations is that the larger the RPF, the
better the protection afforded by the vehicle to its crew.

The RPF assessment also conveys information concerning the optimal positioning
of the vehicle, relative to the radiation source location, to minimize radiation exposure to
the crew. Consequently, unit commanders and their staffs would consider vehicle RPF
assessments invaluable for mission planning and risk assessment purposes when
operating in hazardous radiation environments, thereby enabling commanders to employ
their combat vehicle systems more safely and effectively.

Historically, the US Army pursued both experimental and computational

approaches to solve for the RPF. These techniques were applied against dozens of
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experiments involving the initial and residual radiation created by a nuclear weapon [3,
6]. When analyzing radiation shielding, initial radiation refers to any nuclear emissions
occurring within the first minute after detonation. All subsequent radiation produced by a
nuclear weapon or its effects beyond that time is considered residual radiation [7]. This
distinction became important after it was discovered how different types of shielding
provided varying levels of protection against different forms of radiation. At that time,
the persistent threat of nuclear war served as justification for these tests; however, based
upon recent statements by President Obama [1], a strong argument exists today for
identifying the degree of radiation shielding provided by each vehicle system currently in

the US Army inventory.

Experimental Approach

Experimentation with residual radiation shielding typically employed Cobalt-60,
which simulated the gamma emissions anticipated from nuclear fallout [8]. From
measurements taken both inside and outside a vehicle, a calculation of the GPF could be
made. Other experiments investigated how a particular vehicle’s armor, when mounted
with radiation detectors, would attenuate incident radiation, thereby producing erroneous
detector responses [9]. Despite the variety of conducted experiments, the US Army
quickly realized the most difficult radiation environment to simulate and operate within
came from the initial radiation emitted by a nuclear weapon.

Most of the experimental research on initial radiation effects was conducted at
either the Army Pulse Radiation Facility (APRF), located at Aberdeen Proving Grounds,

Maryland, or near the White Sands Missile Range in New Mexico. Both sites offered
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open-air nuclear reactors capable of projecting high-energy neutrons toward stationary
targets. The APRF boasted a nuclear reactor capable of rising out of the ground to a
maximum height of 14 meters above the surface, a configuration which offered the best
possible simulation of an above ground nuclear detonation [4]. However, due to funding
limitations, the reactors at Aberdeen and White Sands were decommissioned for many

years, although efforts in recent years have returned this capability to White Sands [2].

Computational Approach

Methodology (Deterministic versus Stochastic)

Fortunately, the US Army also researched and developed computational methods
to answer information gaps related to radiation transport. The impetus behind this
approach began in the 1950’s and 1960’s, prior to the advent of computer technology. In
response to the threat of nuclear war posed by the USSR, the Office of Civil Defense
sought to determine the extent to which certain structures protected Americans from
radioactive fallout expected from Soviet nuclear weapons. The first attempt resulted in
the “Engineering Method,” which the National Bureau of Standards developed to provide
semi-empirical estimates of gamma ray transport through simple geometries and
materials [10]. Understandably, this method lacked the capability to analyze complex
shapes and materials; however, these limitations were lifted by the eventual emergence of
computer technology.

One early computer-based approach involved discrete ordinates transport (DOT)
codes. This method utilized deterministic methods to solve the radiation transport

problem in terms of the average particle, which can provide different solutions than those